Jonathan 時常叮嚀 Clark 不要顯露他的能力,因為 the world is not ready.
很多人會覺得你就像正常的超人一樣不就好了?到處救救人,成為超級英雄,大家不就會相信你了?搞什麼悲情捨身救狗,簡直太腦殘了。
其實捨身這件事情,有點像是干將莫邪的捨身煉劍,有種藝術上的必須性。 Jonathan 心中的 Clark 就是將來必有大成的偉大寶劍一樣。原料是有了,但是靈魂還沒有完善。
如同 Jor-El 一樣,Jonathan 也將 Clark 視為未來,自己信念的延續。
Jonathan 問 Clark,難道種種田不也是幫助人嗎?為什麼一定要用超能力來救人?
他的意思並不是要 Clark 待在小鎮一輩子不出去。
他的問題就只是一個問題。 如果 Clark 連這麼簡單的問題都無法很有信心、很清楚的回答,那他還沒有準備好。
世界還沒準備好沒錯,但世界永遠也不會準備好。 問題不在於世界是不是準備好了,而是你有沒有準備好面對這個不理想的世界。
可能有人會說,能力那麼強,是要準備個什麼啊。
打個比方,每天能治好一個人的疾病,什麼病都能治好。這能力夠強了吧。但你要怎麼決定哪一個人該活?先不論到時候黑道特務什麼的把你抓走,脅迫你這回事。你先要面對的是自己的良心,我真的選擇了最該幫助的人了嗎?
好吧,你可能會說,這是能力不夠強的緣故。那讓我加強一下你的能力。你每天可以選擇跟以前一樣救一個人,或者救最多十個人,但之後三十天都不能救人。這時候當有人求你多再救一兩個人的時候,之前你可以攤手說抱歉,剛才用掉了,明天請早。現在要怎麼說?因為你還不夠慘,一個月內還會有比你更需要幫助的人的機率是 0.673。
要不要再讓你更強一點,可以選擇一天都不救人,把名額存起來,可以給你利息喔!
能力越強,煩惱會越多。心理如果不夠成熟,最簡單的作法就是完全把良心丟掉,很簡單的訂個價格,一千萬起跳下標,價高者得。 額外名額三億起跳。
對巴士見死不救,也許有點慘忍。但重點倒不是救或不救,而是他是否有辦法承擔自己的決定。
更何況,前面還只是自己內心部份。直到電影最後,軍方都還對他不完全信任。
所以小時候的 Clark 會害怕的把自己關起來,說世界太大了。他的養母給了他不錯的回答,後來牧師也給他不錯的回答。他的養父也以生命做例子,告訴他堅守自己的信念,可以到怎麼樣的地步。但養父不直接給他答案,因為只有他自己去找,才能找到自己的答案、自己的定位(而不是被指定的答案,被指定的角色。不然就像原克利普頓星人一樣了)。
當然很離譜的是, Clark 居然能遇到這種干將莫邪等級的養父母。也許就像時生一樣吧,父母其實也會與小孩一同成長。
If , then iff there is a key of type in a box of type . for every palidrone by Cauchy-Schwarz inequility.
Denote by the number of boxes of type and the total number of keys of type (including the keys you start with and keys in boxes).
Theorem. All box can be opened iff for every , and there is a directed path from to in graph .
Proof.
()
If , then we don’t have enough keys of type to open all boxes of type .
If there is no path from to , then it means we are unable to get any key of type .
()
We prove this by induction on the number of boxes. Denote by the number of boxes.
Assume for every , and there is a directed path from to in graph .
Case :
Then all vertices in are leaves except and the type of the only box. So there must be an edge from 0 to the type of the box.
Case :
Suppose the theorem holds for the case with boxes.
There are at least one . Consider we open a box of type (that contains a key of type if possible). Assume we destroy the key and the box just opened, then we have a setting of boxes. In this setting, we still have for all . Let be the directed graph of this -box setting.
If , then all children of in become children of , can still reach all other types in .
Assume .
If , then we can open a box of type that contains a key of type .
Otherwise, because , we still hold at least one key of type after we open a box of type (and destroy the key).
Either way, . Therefore, for every child of in , either
1. (if a key of type is in the box we just opened), or
2. and so there is a path from to and then to .
So can still reach very vertex in .
By induction hypothesis, the remaining can also be opened.
By the proof of the theorem, there is a simple algorithm to open all boxes: open any box unless you have just one key of that type and box does not contain a key that can open itself.
However, this algorithm may not yield a "lexicographically smallest" way to open the boxes.
The solve the problem, you should open the box with smallest number such that either this box is the last one of type or there is still a way to get a type key.